Protonmotive force generation by a redox loop mechanism.

نویسندگان

  • Mika Jormakka
  • Bernadette Byrne
  • So Iwata
چکیده

Respiration involves the oxidation and reduction of substrate for the redox-linked formation of a protonmotive force (PMF) across the inner membrane of mitochondria or the plasma membrane of bacteria. A mechanism for PMF generation was first suggested by Mitchell in his chemiosmotic theory. In the original formulations of the theory, Mitchell envisaged that proton translocation was driven by a 'redox loop' between two catalytically distinct enzyme complexes. Experimental data have shown that this redox loop does not operate in mitochondria, but has been confirmed as an important mechanism in bacteria. The nitrate respiratory pathway in Escherichia coli is a paradigm for a protonmotive redox loop. The structure of one of the enzymes in this two-component system, formate dehydrogenase-N, has revealed the structural basis for the PMF generation by the redox loop mechanism and this forms the basis of this review.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of proton motive force generation: structure of formate dehydrogenase-N.

The structure of the membrane protein formate dehydrogenase-N (Fdn-N), a major component of Escherichia coli nitrate respiration, has been determined at 1.6 angstroms. The structure demonstrates 11 redox centers, including molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters, two heme b groups, and a menaquinone analog. These redox centers are aligned in a single chain, which extends alm...

متن کامل

The effect of sorbic acid and esters of p-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane vesicles.

The effect of three food preservatives, sorbic acid and methyl and butyl esters of p-hydroxybenzoic acid, on the protonmotive force in Escherichia coli membrane vesicles was investigated. Radioactive chemical probes were used to determine the two components of the protonmotive force: delta pH (pH difference) and delta psi (membrane potential). Both types of compound selectively eliminated delta...

متن کامل

Diffusion-controlled generation of a proton-motive force across a biomembrane.

Respiration in bacteria involves a sequence of energetically coupled electron and proton transfers creating an electrochemical gradient of protons (a proton-motive force) across the inner bacterial membrane. With a simple kinetic model, we analyze a redox loop mechanism of proton-motive force generation mediated by a molecular shuttle diffusing inside the membrane. This model, which includes si...

متن کامل

THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5.

The maximum redox potential difference between the NAD+/NADH couple and the succinate/fumarate couple generated during ATP-energized reduction of NAD+ by succinate in submitochondrial particles was measured, together with the electrochemical potential difference for protons (delta mu approximately H+). The presence of cyanide, the time-independence of the redox potential difference and the irre...

متن کامل

Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane.

The relationship between protonmotive force and superoxide production by mitochondria is poorly understood. To address this issue, the rate of superoxide production from complex I of rat skeletal muscle mitochondria incubated under a variety of conditions was assessed. By far, the largest rate of superoxide production was from mitochondria respiring on succinate; this rate was almost abolished ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 545 1  شماره 

صفحات  -

تاریخ انتشار 2003